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Abstract

Generic imaging models can be used to represent any

camera. These models are specially suited for non–central

cameras for which closed-form models do not exist. Cur-

rent models are discrete and define a mapping between each

pixel in the image and a straight line in 3D space. Due to

difficulties in the calibration procedure and model complex-

ity these methods have not been used in practice. The focus

of our work was to relax these drawbacks. In this paper we

modify the general imaging model using radial basis func-

tions to interpolate image coordinates and 3D lines allow-

ing both an increase in resolution (due to their continuous

nature) and a more compact representation. Using this new

variation of the general imaging model we also develop a

new linear calibration procedure. In this process it is only

required to match one 3D point to each image pixel. Also

it is not required the calibration of every image pixel. As

a result the complexity of the procedure is significantly de-

creased.

1. Introduction

Most cameras can be modeled by a perspective projec-

tion, which implies that all projecting rays intersect at a sin-

gle point [9]. These cameras where all projecting rays in-

tersect at a single point are usually called central cameras.

However, in the last few years, cameras whose projecting

rays do not satisfy the constraint of intersecting at a single

effective viewpoint started to be used, due essentially to the

large fields of view that can be obtained. These cameras

are called non-central and in many cases are obtained by

combining a perspective camera with a curved mirror–the

catadioptric cameras [5, 1, 20, 10]. They are used in several

applications ranging from robotics to visualization. Cen-

tral cameras have parametric models and their calibration

consists in the estimation of the parameters of those mod-

els. Non-central cameras do not have, in general, paramet-

ric models. A recent result, however, derived an analytical

model for the forward projection of a non-central system

made up of a perspective camera and a rotationally sym-

metric conic mirror [1]. For the special case of a spherical

mirror they also derived the back-projection equations [1].

In this article, we study the calibration of generic cam-

era models. Calibration of a generic camera model was first

discussed by Grossberg and Nayar [6, 7]. In these articles,

a non-parametric discrete imaging model was defined, con-

sisting in associating projecting rays in 3D space with pix-

els in the image. To each pixel, a set of parameters called

raxel is associated. The set of all raxels (representing all

pixels) constitutes the complete generic imaging model. A

raxel is a set of parameters including image pixel coordi-

nates, the coordinates of the associated ray in the world (po-

sition and direction) and radiometric parameters.

Grossberg and Nayar also propose a method for estimat-

ing the parameters of the general imaging model. Their ap-

proach requires the acquisition of, at least, two images of

a calibration object with known structure and also requires

the knowledge of the object motion between the images.

Sturm and Ramalingam [19] and Ramalingam et al. [17]

proposed a calibration method based on the non-parametric

imaging model, suggested by Grossberg and Nayar. How-

ever, they excluded from their model the radiometric enti-

ties of the raxel. Their method assumes that the camera is

fully described by the coordinates of rays and the mapping

between rays and pixels.

Instead of using two images, Sturm and Ramalingam

developed a method that requires three images of the cal-

ibration object, acquired from arbitrary and unknown view-

ing positions. If three points of the calibration object are

seen for the same pixel, the collinearity constraint allows

the computation of the motion between the images of the
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calibration object and, as a result, it allows the estimation

of the direction of the ray in 3D space.

In [16], a minimal solution for the generic imaging

model was proposed based on their previous work [19].

They showed that the minimal solution is more robust to

noise when compared to the non-minimal solution.

All the methods mentioned above are discrete and non-

parametric, using mapping arrays (raxels) to calibrate the

imaging model. Image pixels have associated a set of pa-

rameters that are independent from their neighbors. There-

fore, performing a complete camera calibration requires set-

ting the mapping parameters for every pixel.

However, most of the useful non–central cameras have,

in general, a pixel–ray relations that vary smoothly along

the image. That is the case for non-central catadioptric sys-

tems with quadric mirrors [5, 20, 10], or linear cameras

[13, 8, 22, 23].

Our goal in this work is to relax the complexity of the

general imaging model and calibration process using the as-

sumption that the parameters of the pixel–ray relationship

vary smoothly. This assumption is used to define a para-

metric representation for the general imaging model. As a

result the number of unknown parameters can be decreased.

In addition the number of parameters is independent from

the image resolution. Using this representation of the gen-

eral imaging model, a new method for its calibration is de-

scribed. This method reduces the complexity of the calibra-

tion process. The calibration of the imaging model used in

[6] and [19] requires at least two points in the world, for

the same image point. We develop a calibration procedure

that only needs one world point for an image point. As in

[19], only geometric entities of general imaging model are

considered.

2. Notation and Background

2.1. Notation

Matrices are represented as bold capital letters (e.g. A ∈
R

n×m, n rows and m columns). Vectors are represented as

bold small letters (e.g. a ∈ R
n, n elements). By default, a

vector is considered a column. Small letters (e.g. a) repre-

sent one dimensional elements. By default, the jth column

vector of A is specified as aj . The jth element of a vector

a is written as aj . The element of A in the line i and col-

umn j is represented as ai,j . Regular capital letters (e.g. A)

indicate one dimensional constants.

Projective space is represented as Pn (in Euclidean n-

space). A point x in Pn can be written in homoge-

neous coordinates in R
n+1 as x = (x0, x1, x2, . . . , xn)

and we can recover non-homogeneous coordinates with

x′ = (x1/x0, x2/x0, . . . , xn/x0).

We use R after a vector or matrix to denote that it is

represented up to a scale factor.

Let U ∈ R
m×n and V ∈ R

k×l and the equation

UXVT = C (1)

where X ∈ R
n×l is the equation unknown. It is possible to

rewrite the previous equation as

(V ⊗U) vec (X) = vec (C) (2)

where ⊗ is the Kronecker product of U and V, with

(V ⊗U) ∈ R
mk×nl, and vec (X) is a nl–vector formed

by stacking the columns of X.

2.2. Plücker coordinates

Plücker coordinates are a special case of Grassmann co-

ordinates [14]. A Grassmann manifold is the set of k di-

mensional subspaces, in a n dimensional vector space, and

it is denoted as Λk
R

n. Plücker coordinates can be obtained

as a result of the application of an representation of the ex-

terior product to four dimensional vectors x∧ y. The result

of this operation lies in a six dimension vector space R
6,

that can represent lines in P3.

Consider two points in the world (x and w in P3) rep-

resented in homogeneous coordinates R
4. Using Plücker

coordinates, we can represent a 3D line, incident with both

points, as

lR = x ∧w = (l01, l02, l03
︸ ︷︷ ︸

d

, l23, l31, l12
︸ ︷︷ ︸

m

) ∈ Λ2
R

4 ⊂ R
6

(3)

with lij = xiwj − xjwi, basis eij = ei ∧ ej (ei are R
4

basis) and d and m are, respectively, the direction and the

moment of the line.

Although all elements of the four dimensional exterior

product, Λ2
R

4, belong to R
6, not all elements of R6 repre-

sent lines in 3D space. It can be shown that, Equation (3) is

the result of a four dimensional space exterior product (and

therefore it is a line in 3D space), if and only if it belongs

to the Klein quadric

Ω(l, l) = l01l23 + l02l31 + l03l12 = 〈d,m〉 = 0 (4)

One of the most important properties of Plücker coor-

dinates is its ability to compute incidence relation of lines

and points, in the world. Using the direction and moment

vectors, a point p ∈ P3 is incident with a line l ∈ Λ2
R

4 if

(
[p]x −I

0T pT

)

︸ ︷︷ ︸

Q(p)

lR = 0 (5)

where p ∈ R
3 (non–homogeneous representation), [a]x is a

matrix that linearizes the exterior product as [a]x b = a×b

and I is a 3× 3 identity matrix.
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2.3. Interpolation

Suppose that we want to estimate an unknown func-

tion, f : R
D 7→ R, from a set of scattered data points

X = {xi} ⊂ R
D (with D a natural number) and y =

{yi}, where the set {xi, yi} forms a training data set

{yi = f (xi)}.

Interpolation requires the computation of an interpolat-

ing function, s : RD 7→ R, that satisfies

s (xi) = f (xi) , ∀i (6)

Radial basis functions (RBF) [3, 21, 15, 18] can be

used to solve this problem. For a set P of training points

{x1, . . . ,xP }, the RBF interpolant function has the form

s (x) = a0 + aTx x+

P∑

i=1

wiφ (||x− xi||) (7)

where ||.|| is the 2–norm vector [4], φ : R+ 7→ R is the

radial basis function and ax ∈ R
D. a0, ax and wi are the

interpolant unknowns.

There are two types of kernel functions that can be

used as the RBF interpolant. One type of kernel functions

does not have shape parameters, like thin–plate splines,

φ (r) = r2log (r), or φ (r) = r2. The other type of ker-

nel functions does have shape parameters, such as Gaus-

sian functions φ (r) = exp
(
−β2r2

)
, and multi–quadrics

with φ (r) =
(
β2 + r2

)1/2
where β is the shape parameter.

The interpolation is obtained by means of the estimation

of the unknown parameters of the interpolant a = (a0,ax)
and w = (w1, . . . , wP ) of Equation (7). The interpolating

function s (x) has P+D+1 degrees of freedom and the data

sets X and y only yield P equations. For the estimation of

the unknowns in Equation (7), additional constraints have to

be used. Since function φ is conditionally positive definite

[21] the following equations are verified,

P∑

i=1

wi = 0 &
P∑

i=1

wix
(i)
1 = · · · =

P∑

i=1

wix
(i)
D = 0

(8)

[21, 11] where x
(j)
i is the ith element of the jth observa-

tion. The use of these constraints allows the estimation of

all unknowns.

3. Parametric Representation of the General

Imaging Model

From the definition of general imaging model, intro-

duced by Grossberg and Nayar [6], each pixel in the image

x ∈ P2 is mapped to a ray in 3D space l ∈ L3. As men-

tioned before, the model is based on an array of parameters

called raxel.

l1
l2

l3

ln ln+1

ln+2

m1 m2

m3 mn

mn+1
mn+2

P2

P3

x
y

z

li = f (xi)

ci

Figure 1: General imaging model with parametric model-

ing. mi represents the individual mapping between pixels

in P2 and the line space in L3 (that represents geometric pa-

rameters of the raxels). Our assumption is that this mapping

is smooth and that it can be represented by a vector–valued

function f (x) : P2 7→ L3. We call ci control points.

In their model, a complete general imaging model is rep-

resented by a non-parametric discrete array of raxels, that

contains all possible pixels in an image. This means that

the pixel–line mappings are required for all pixels. Inde-

pendently of the image resolution or of the smoothness on

the variation of the parameters, that correspond to the 3D
lines associated to neighboring pixels. If we consider only

the geometric entities in Grossberg and Nayar’s model, each

raxel contains at least seven parameters. Thus, for each

pixel, there are seven unknown parameters to be estimated.

For an image with size N ×M , there are 7NM parameters

to be estimated. Our target in this section is to reduce the

number of parameters to be estimated.

Our assumption is that the pixel–line mapping can be

represented by a smoothly varying vector–valued function

f : P2 7→ L3, that maps a point in the image plane to a line

in 3D space. This assumption can significantly decrease the

number of model unknowns and also filter out some error

due to noise.

Different points in the image can correspond to the same

ray in the world. On the other hand, in a general imaging

system, different rays in the world can not be mapped to the

same image point. Thus, the general vector–valued func-

tion l = f (x) takes a non–injective form. In most cases,

a general direct projection model does not exist, since one

3D line can be mapped into more than one point in the im-

age plane. As a result, a general imaging model can only be

defined when considering the mapping from image coordi-

nates to 3D lines.

A schematic representation of this model is shown in the

Figure 1.
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3.1. Non–Injective Vector–Valued Function

A 3D line representation has to be chosen for the output

of the vector–valued function. Lines in 3D have four de-

grees of freedom. However, none of compact four variable

representations for 3D lines is complete.

Plücker coordinates (Section 2.2) are a complete, elegant

and easy to understand line representation. On the other

hand, it has six elements to represent four degrees of free-

dom. It is defined up to a scale factor and has an orthogonal

constraint associated to its elements.

Instead of using Plücker coordinates as estimator, we

use a vector as the stacking of direction and moment l̂R =
(

d̂, m̂
)

. In other words, we are estimating two independent

vectors, up to the same scale factor.

Good estimates of d̂ and m̂ yield small deviations from

the orthogonal constraint. However, it is possible to find

orthogonal vectors d and m from their estimates using

Schmidt orthogonalization [4], by finding the closest rota-

tion matrix to
(

¯̂
d ¯̂m

¯̂
d× ¯̂m

)

, where x̄ = x/ ||x||, or

by using the algorithm proposed by Bartoli and Sturm [2].

There are several ways to estimate a non–injective func-

tion from a set of scattered data. We use the RBF interpolant

described in Section 2.3

s (x) = a0 + aTx x+

P∑

i=1

wiφ (||x− ci||) (9)

where {ci} ,x ∈ R
2. We can rewrite the previous equation,

in matrix form as

s (x) =
(
φ (x) p (x)

)
(

w

a

)

︸ ︷︷ ︸

hwa

(10)

where a = (a0,ax) and w = (w1, w2, . . . , wP ). φi (x) =
φ (||x− ci||). p (x) =

(
1 x1 x2

)
. φ (x) and p (x)

are row vectors.

The vector–valued function output is l̂ ∈ R
6 where

each l̂i is independent. Thus, we can use six indepen-

dent RBF interpolants to form the vector–valued function

s (x) =
(
s1 (x) s2 (x) . . . s6 (x)

)
, which can be

rewrote as

s (x) =
(
φ (x) p (x)

) (

h
(1)
wa h

(2)
wa . . . h

(6)
wa

)

︸ ︷︷ ︸

Hwa

(11)

The vector–valued function is a row vector, s (x) ∈ R
1×6,

which implies l̂R = sT (x).
For a set {ci}, a matrix Hwa and a certain RBF, the es-

timates of the direction and moment vectors are given by

l̂TR =
(

d̂T m̂T
)
R =

(
φ (x) p (x)

)
Hwa (12)

For two different imaging systems, using the same set

of points {ci}, the estimation of l̂ for an image point x only

depends on the matrix Hwa. Thus, we call Hwa the camera

matrix. On the other hand, for the same imaging system, the

values of the parameters of the camera matrix depend on the

set {ci}, and that is why we call them control points.

Usually, in statistics, the set {ci} is called centers. In

computer vision, the word center in an imaging system typ-

ically designates the center of the projection. As a result,

we chose to name to the set {ci} as control points.

For a set P of control points defined a priori {ci} and a

camera matrix Hwa ∈ R
(P+3)×6, it is possible to define a

generic smooth general imaging model by a vector–valued

function s : R2 7→ R
6.

The general imaging model only depends on the un-

known matrix Hwa, for a set of previously defined control

points. Therefore, the complete calibration of general imag-

ing models is obtained by estimating 6P +18 unknown pa-

rameters, that sets up the camera matrix.

4. Point–based Calibration

One significant disadvantage in the use of the general

imaging model is the difficulty in its calibration. Gross-

berg and Nayar [6] and Sturm and Ramalingam [19] define

two methods for the calibration. The complete calibration

is achieved when each image pixel has a raxel associated to

it. To estimate one raxel, at least two 3D points are required

for each same image point.

The method presented in this paper aims at relaxing the

calibration procedure, by using the parametric representa-

tion of the general imaging model described in Section 3.

The goal is to calibrate a general imaging model without es-

timating each and all the raxels while, at same time, allow-

ing the same resolution. In addition, the method should re-

quire only a set of point correspondences {xi 7→ pi}, ({pi}
is the set of world points and {xi} its correspondents points

in the image plane), where we can use points correspon-

dences that satisfy

xi 6= xj , ∀i6=j (13)

We never need to know more than one world points, for a

point in the image plane.

There are two sets of unknowns in the calibration proce-

dure: the set of control points {ci} and the camera matrix

Hwa elements. Control points can be defined a priori, by

selecting a set P of scattered image points, that can or can-

not be a subset of data points {ci} ⊂ {xi}.

In the rest of this section, we describe a linear method to

estimate 6P +18 parameters of the camera matrix, for a set

of control points defined a priori.
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4.1. Calibration Matrix M

World points incident with lines must satisfy Equa-

tion (5). From function l̂R = s (x)
T

and Equation (5)

(

Q (p) l̂R
)T

=
(

l̂R
)T

Q (p)
T

= 0 (14)

s (x)Q (p)
T

= 0 (15)

Replacing s (x), in Equation (15) by Equation (11)

(

φ (x)
T

p (x)
T

)

︸ ︷︷ ︸

r(x)

HwaQ (p)
T
= 0 (16)

where r (x) ∈ R
1×(P+3).

The unknowns are the elements of the matrix Hwa.

Thus, we use Kronecker product, Section 2.1, that allow

us to rewrite (16) in order to isolate the unknown camera

matrix as

[Q (p)⊗ r (x)] vec (Hwa) = 0 (17)

where the matrix Q (p) ⊗ r (x) ∈ R
4×(6P+18) and

vec (Hwa) ∈ R
(6P+18) is the stacking of h

(i)
wa columns,

for i = 1, . . . , 6.

For a set N of point correspondences {xi 7→ pi} of the

same imaging system, [Q (pi)⊗ r (xi)] vec (Hwa) = 0

and we can build the calibration matrix

M =














Q (p1)⊗ r (x1)

Q (p2)⊗ r (x2)

...

Q (pN )⊗ r (xN )

D














(18)

where M ∈ R
(4N+18)×(6P+18) and matrix D ∈

R
18×(6P+18) is as [11].

Calibration procedure is reduced to the estimation of the

unknown camera matrix Hwa such that

Mvec (Hwa) = 0 (19)

that means

vec (Hwa) ∈ null (M) (20)

where null (.) indicates matrix null–space.

4.2. Computation of the Camera Matrix

From Equation (20), it results that the estimate of the

camera matrix must belong the the null–space of the cali-

bration matrix M.

To ensure an unique solution, and since vec (Hwa) ∈
R

6P+18, we have to make sure that the dimension of the

column space of M is C (M) = 6P +17, which means that

the dimension of the null–space of M must be N (M) = 1.

From Equation (12), any solution for the camera ma-

trix is defined up to a scale factor. Thus, assuming that

N (M) = 1, any element of the one dimensional null–

space of M is solution, except for the trivial solution

vec (Hwa) = 0.

To prove that the dimension of the column space of M

is C (M) = 6P + 17, we decompose Equation (18) into

rows, by means of the Kronecker product. Permutation of

the rows in any matrix does not change the dimension of

the column space. Making N = 2P , and for a matrix D ∈
R

18×6P+18 it can be proved that C (M) = 6P + 17–see

next section and [11].

The computation of the dimension of the column space

and coresponding constraints is described in [11].

4.3. Relationship between Control Points, point cor
respondences and radial basis function used in
the calibration

In this section, we describe the constraints that must be

met by {xi} and {ci} to obtain C (M) = 6P +17. We also

suggest two types of radial basis functions, that can be used

to get C (M) = 6P + 17.

Consider that we have a set of point correspondences,

{xi 7→ pi} for i = 1, . . . , 2P , where xi 6= xj , ∀i 6= j.

Next split up the set {xi} into two sub-sets X = {xi}, for

i = 1, . . . , P and Y = {xj}, for j = P + 1, . . . , 2P .

In [15] and [11] it is shown that only control points ({ci},

for i = 1, . . . , P ) and data points ({xj}, for j = 1, . . . , 2P )

that meet the condition

d < ǫq (21)

can be considered. In Equation (21), d = min {d1, d2},

0 < ǫ ≤ 1, d1 = max {||xi − ci||}, where the set {xi}
belongs to the set X , d2 = max {||xi − ci||}, where the set

{xi} belongs to Y and 2q = minj 6=i {||ci − cj ||}.

Note that (from [11]) if we consider {ci} = X and if

d2 < ǫq then we can also obtain C (M)) = 6P + 17. This

solution also meets the constraint xi 6= xj , ∀i 6= j.

Quak et al. [15] proved that φ1 (r) =
(
β2
1 + r2

)1/2
and

φ2 (r) = e−β2r
2

are good choices for radial basis functions,

because, choosing an appropriate β1 and β2, they reduce the

negative effects of small values of q and ǫ respectively, in

Equation (21).

5. Experiments

The calibration method and general imaging model de-

scribed in this paper were evaluated using both synthetic

data sets and real data sets.
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(a) Sphere mirror
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Figure 2: Evaluation of the average line distance error, Equation (24), as a function of the number of control points, for

non–central catadioptric systems with sphere (a) and hyperbolic mirror (b). Dashed lines correspond to the average errors in

the cases where Gaussian random noise was added to the coordinates.

5.1. Results with Synthetic Data Sets

Synthetic data sets were used to evaluate the effect of a

varying number of control points on a error measure defined

as a distance between 3D lines. We used multi–quadrics

φ1 (r) =
(
β2
1 + r2

)1/2
and exponential φ2 (r) = e−β2r

2

as

radial basis functions.

The synthetic data sets were obtained for non–central

catadioptric systems [5]. Two types of quadric mirrors were

considered: hyperbolic and spherical mirrors.

The calibration method estimates an interpolant function

s : R2 7→ R
6 that should fit an imaging model, defined by

a function f : P2 7→ L3, where f is an analytical represen-

tation of the corresponding imaging model. In the case of

a non–central catadioptric system made up of a perspective

camera and hyperbolic or spherical mirror, an analytical ex-

pression for f can be obtained [5, Section 4.3].

We use f to generate a data set of {xi 7→ pi}, for i =
1, . . . , N and select P control points from the set {xi},

where the conditions described in Section 4.3 are met.

Using f , we generate a ground truth data set {yi 7→ li},

where yi are the ground truth image coordinates and li are

the ground truth line coordinates.

We use the set {xi 7→ pi} and {ci} to calibrate the imag-

ing system. With the interpolant functions s, we generate

the estimated set
{

yi 7→ l̂i

}

, where l̂i = s (yi) and s are

defined in Section 3.1.

We want to measure the deviation of l̂i from li. To

characterize the error we use the average of the distances

ǫi = d
(

li, l̂i

)

.

Consider two lines represented as Plücker coordinates

gR and hR that can be approximated via local mappings

into euclidean 4-space g̃ = (g1, g2, g3, g4) and h̃ =

(h1, h2, h3, h4) [14] such that

g = (g3 − g1, g4 − g2, 1, g2,−g1, g1g4 − g2g3) (22)

h = (h3 − h1, h4 − h2, 1, h2,−h1, h1h4 − h2h3) (23)

The distances between the lines are estimated using

d
(

g̃, h̃
)2

=
4∑

i=1

(gi − hi)
2
+ (g1 − h1) (g3 − h3)+

(g2 − h2) (g4 − h4)
(24)

We evaluate the results by varying the number of control

points, P , from 20 to 100, and with a set of point corre-

spondences N = 2P . For each number of control points

(P ), we evaluate the calibration using the ground truth data

set {yi 7→ li} for i = 1, . . . , 120. For each set of control

points, we repeat the calibration 200 times, where the sets

{xi} and {yi} are chosen randomly.

We repeat the same procedure adding Gaussian ran-

dom noise {µi} to the world coordinates {pi + µi}. The

standard deviation of the Gaussian noise added to the co-

ordinates {µi} was std
(

µ
(j)
i

)

= 0.25e where µi =
(

µ
(1)
i , µ

(2)
i , µ

(3)
i

)

and e = min {||pi − pj ||}, for all i 6= j.

Results are shown in Figure 2.

5.2. Experiments Using Real Data Sets

For experiments with real data sets, we calibrated three

different types of imaging systems, using our representation

of the general imaging model and its point–based calibra-

tion. We used a projective camera and two different cata-

dioptric systems, Figure 3a, 3d and 3g respectively.

To acquire the point correspondences {xi 7→ pi} for the

calibration process, we used a chess board. We attached to

the chess board infrared (IR) LEDs and their positions in the
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Figure 3: Results with real data generated by our approach of the general imaging model, for three types of camera models:

perspective camera (a), catadioptric system with spherical mirror (d) and catadioptric system with two planar mirrors (g).

Yellow points in (b), (e) and (h) are the set of image coordinates {xi} and yellow points in (c), (f) and (i) are the corresponding

set of world points {pi}, used in the calibration process. Red squares in the 2D plot and the red rays in the 3D plot are the a

subset of
{

yi 7→ l̂i

}

produced with multi–quadrics RBF. Green points in (b), (e) and (h), are the corresponding set of control

points used in the calibration.

world are measured using an IR tracker [12]. This tracker

has an accuracy of 0.1mm and a resolution of 0.01mm.

Each corner of the chess board in the image (xi) is asso-

ciated to a position in the world (pi), which is given by its

corresponding position in the chess board. The association

set {xi 7→ pi} will be used in the calibration process.

The set of image points {xi} are the yellow points in

Figures 3b, 3e and 3h. The set of world points {pi} are the

yellow points in Figures 3c, 3f and 3i.

Control points {ci} are chosen as a subset of {xi}. They

are shown as green points, in Figures 3b, 3e and 3h.

Using {xi 7→ pi}, we estimate the interpolant function

s. Since, in the real experiments, we have N > 2P , we

will have an over–determined solution. The solution for the

camera matrix is obtained using a least–squares solution for

the homogeneous equations [9].

To evaluate the calibration, 3D coordinates from a dif-

ferent object were used. The IR tracker has a ”test object”

(also with LEDs) which is provided to enable the estimation

of 3D coordinates of points. This different object was used

to generate a new data set {yi 7→ wi}, where yi are image

points and wi are world points. This new data set was used

to evaluate the calibration performed with the former data

set.

The distance error is defined by the distance from the

world point pi to the generated line l̂i, where l̂i = s (yi).

A subset of {yi} and corresponding lines
{

l̂i

}

is shown as

red squares, in Figures 3b, 3e and 3h, and as red lines, in

Figure 3c, 3f and 3i, respectively.
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RBF Gaussian [cm] Multi–quadrics [cm]

Projective 1.1488± 3.1436 0.5651± 0.4373
Sphere mirror 3.0164± 6.2657 1.4592± 0.9974
Plane mirrors 0.9972± 2.1595 0.9738± 2.4991

Table 1: Average and standard deviation of the distances, in

centimeters, between points in the world and lines generated

by our representation of the general imaging model. We

use the set {xi 7→ pi} for i = 1, . . . , 700 as calibration set

and the set
{

yi 7→ l̂i

}

, where i = 1, . . . , 3840, for each

imaging system, as the test set.

The geometric distance between a line (in Plücker co-

ordinates) and a point in the world is given by ǫi = ||ǫi||,
where

ǫi =
(
[wi]x −I

)
l̄i (25)

and l̄i = l̂i/ ||di||.
The number of control points used in the calibration were

90, 120 and 150, for the imaging systems of Figures 3a, 3d

and 3g respectively. The results are shown in Table 1 as well

as in the video, provided as supplementary material [11].

6. Conclusions

The calibration method described in this paper can be

used in the calibration of complex camera models, namely

for cameras which no analytical projection model exists.

The approach is based on a parametric version of the

generic imaging model. The approach described in this

paper can model an imaging model with significantly less

parameters than the discrete generic imaging model. For

the model described in this paper the number of param-

eters does not depend on the image size. Instead of the

7NM parameters, for an M × N image, required by the

discrete generic imaging model, this approach only requires

6 (P + 3) for P control points.

The calibration procedure described in this paper only

requires the 3D coordinates of a world point for each image

point, whereas previous approaches require two or more 3D

points for each image point. On the other hand, the calibra-

tion parameters which are estimated for a sub-set of image

points can be generalized for all image pixels, which con-

stitutes an important advantage of this method.
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